a) a+(-a)=2 a-a=2 0=2 de aici rezulta ca solutia nu are valori reala
b) x + 1/x >=2 Aducem la acelasi numitor (stiind ca x este pozitiv) : x^2+1 >= 2x Avem de demonstrat ca x^2 -2x + 1 >= 0 Avem deci o ecuatie de grad 2 cu ramurile in sus. minimul = -delta/4a delta = 4-4 = 0 minimul = 0/4 = 0 Deci x^2 -2x + 1 >=0, pentru orice x real pozitiv, rezulta : x + 1/x >=2