Răspuns :
Notam numerele: a si b
Incincitul diferentei : 5(a-b)
Avem:
a+b=4,1(6) × (a-b)
a+b=5(a-b)-4
[tex]\\\\ a+b=5(a-b)-4\\\\a+b=5a-5b-4\\\\6b=4a-4\ \ \ |:2\\\\3b=2a-2\\\\b=\frac{2a-2}{3}[/tex]
- Inlocuim pe b in relatia de mai jos si vom obtine:
[tex]a+b=\frac{416-41}{90}\times (a-b)\\\\a+\frac{2a-2}{3}= \frac{25}{6}\times (a-\frac{2a-2}{3} )[/tex]
[tex]a+\frac{2a-2}{3}= \frac{25}{6}\times (\frac{3a}{3} -\frac{2a-2}{3} )\\\\a+\frac{2a-2}{3}= \frac{25}{6}\times \frac{a+2}{3}[/tex]
- Aducem la acelasi numitor comun 18 si vom avea:
18a+12a-12=25a+50
5a=62
a=12,4
[tex]b=\frac{2\times 12,4-2}{3} =\frac{22,8}{3} =7,6[/tex]
b=7,6
a+b=20
a-b=4,8