Răspuns :
a. In ΔACB dr in C, avem ∡ABC=60°⇒
∡CAB=180-(90+60)=30°⇒Teoremei ∡30°⇒ 2BC=AB
2×12=AB
AB=24 cm
- Daca AC=BD (diagonalele trapezului)⇒ABCD trapez isoscel⇒ BC=AD
AD=12 cm
m(∡DAB)=60° (trapez isoscel)
m(∡CAB)=30°⇒ m(∡DAC)=30°
m(∡ADC)=[360-(60+60)]:2=120°
⇒ m(∡DCA)=180-(120+30)=30°
Deci ∡DCA=∡DAC∡⇒ΔDAC isoscel⇒ AD=DC
DC=12 cm
- In ΔABC , aplicam Pitgora
AB²=AC²+BC²
AC²=576-144=432
AC=√432=12√3 cm
b. CM=12cm (jumatate din ipotenuza AB, fiind mediana in triunghi dreptunghic)
CD=12 cm
M mijlocul AB⇒ AM=MB=12 cm
Deci CD=AM , CD║AM (CD║AB)
CM=CD⇒CD=AD=CD=AM⇒ CDAM romb
CM║AD⇒ CG║PA
ΔCNG~ΔANP⇒
[tex]\frac{CN}{NA}=\frac{CG}{AP} =\frac{GN}{NP} \\\\\frac{CN}{NA}=\frac{GN}{NP}\\\\1=\frac{GN}{NP}\\\\GN=NP[/tex]
- Putem afla BN in ΔCNB dr in C, aplicam Pitagora
BN²=CN²+BC²
BN²=108+144
BN²=252
BN=6√7
BG se afla la doua treimi de varf
[tex]BG=\frac{2}{3} \times BN=\frac{2}{3}\times 6\sqrt{7} =4\sqrt{7}[/tex]
GN=6√7-4√7=2√7 cm=NP
BP=PN+BN=2√7+6√7=8√7 cm
Deci raportul dintr BG si BP este:
[tex]\frac{BG}{BP}=\frac{4\sqrt{7} }{8\sqrt{7} } =\frac{1}{2}[/tex]
c. Stim de la punctul anterior ca NP=NG, CN=AN si AP=CG
Aflam CG, implicit AP
CM=12cm
CG se afla la doua treimi de varf
[tex]CG=\frac{2}{3}\times 12=8\ cm[/tex]
Deci AP=8 cm, AD=12 cm⇒ PD=12-8=4 cm
- NP║DQ⇒ T.Thales
[tex]\frac{AP}{PD}=\frac{AN}{NQ}[/tex]
[tex]\frac{8}{4} =\frac{6\sqrt{3} }{NQ} \\\\NQ=3\sqrt{3}[/tex]
CN=6√3 ⇒ Q mijlocul lui CN⇒ AN=2NQ