1 /x · ( 1 /1·2 + 1 / 2·3 + ····· + 1 /15 ·16 ) = 0,3
formula pentru numere consecutive 1 / n · ( n +1 ) = 1 /n - 1 /( n+1 )
1/x ·( 1/1 - 1/2 + 1/2 -1/3 + ······ 1/13 - 1/ 14 + 1 /14 -1/15 + 1/15 - 1/16 ) =
= 0,3
1/x · ( 1/1 - 1 /16 ) =0,3
15 / 16x = 0,3
15 = 16· 0,3 ·x
x = 15 / 16·0,3 = 15 / 4,8 =25 / 8