👤

2. Vom spune că un număr natural de patru cifre este echilibrat dacă prima sau ultima sa cifră este egală cu suma
celorlalte cifre ale sale. Dacă abcd şi abcd + 1 sunt numere echilibrate, atunci suma a + d este egală cu:
13
10
Ο Ο Ο Ο Ο
11
O 15
14


Răspuns :

  • Ca un numar abcd sa fie echilibrat trebuie ca a=b+c+d

si d=a+b+c

  • Dar pentru ca abcd si abcd+1 sa fie echilibrate , inseamna ca vom avea trecere peste ordin , adica d=9
  • Deci abc9 e numarul nostru momentan

        si abc9+1= ab(c+1)0

Inseamna ca avem:

a+b+c=9

a=b+c+1+0

Adica

b+c+1+b+c=9

2(b+c)=8

b+c=4

Dar a+b+c=9 deci a+4=9 a=5

Deci abcd={5049,5139,5229,5319,5409}

abcd+1={5050,5140,5230,5320,54010}

Deci a+d=5+9=14

Raspuns:14