Răspuns:
Explicație pas cu pas:
Ai desenul atasat
a. ΔAOM dreptunghic in A
∡O=60°⇒∡M=30°⇒ MO=2AO
MO=12 cm
b. AO=OB (raze)
m(∡AOB)=60°⇒ ΔAOB echilateral ⇒ [tex]A_{AOB}=\frac{l^{2\sqrt{3} } }{4} =9\sqrt{3} cm^{2}[/tex]
In ΔAOM aplicam Pitagora
MO²=AO²+AM²
AM²=144-36=108
AM=6√3
[tex]A_{AOM=\frac{6\cdot 6\sqrt{3} }{2} =18\sqrt{3}[/tex]
[tex]A_{ABM}=A_{AOM}-A_{AOB}=18\sqrt{3}- 9\sqrt{3} =9\sqrt{3} cm^{2}[/tex]