👤

Rezolvați ecuația

[tex] \huge{8}^{4x + 5} = {5}^{6x + 10} [/tex]
Mulțumesc!​


Răspuns :

[tex]\it 8^{4x+5}=5^{6x+10} \Rightarrow 8\cdot8^{4x+4}=5^4\cdot5^{6x+6} \Rightarrow 8\cdot(8^2)^{2x+2}=625\cdot(5^3)^{2x+2} \Rightarrow \\ \\ \\ \Rightarrow \Big(\dfrac{64}{125}\Big)^{2x+2}=\dfrac{625}{8} \Rightarrow lg\Big(\dfrac{64}{125}\Big)^{2x+2}=lg\dfrac{625}{8} \Rightarrow \\ \\ \\ \Rightarrow(2x+2)lg\Big(\dfrac{64}{125}\Big)=lg\dfrac{625}{8} \Rightarrow 2x+2=[/tex]

Alte intrebari