Răspuns :
Răspuns:
Explicație pas cu pas:
p = număr prim impar
p ∈ {3, 5, 7, 11, 13, 17,.........}
[tex]\bf \dfrac{\blue{a}}{\red{b}} =\dfrac{\red{c}}{\blue{d}}~;~~ \red{b, ~c~\rightarrow mezi}~~~~\blue{a, ~d~\rightarrow extremi}[/tex]
[tex]\bf \dfrac{1}{\red{2}} =\dfrac{\red{p}}{2p}[/tex]
Exemple:
[tex]\bf \dfrac{1}{\red{2}} =\dfrac{\red{3}}{2\cdot3}\implies \dfrac{1}{\red{2}} =\dfrac{\red{3}}{6}[/tex]
[tex]\bf \dfrac{1}{\red{2}} =\dfrac{\red{5}}{2\cdot5}\implies \dfrac{1}{\red{2}} =\dfrac{\red{5}}{10}[/tex]
[tex]\bf \dfrac{1}{\red{2}} =\dfrac{\red{7}}{2\cdot7}\implies \dfrac{1}{\red{2}} =\dfrac{\red{7}}{14}[/tex]
[tex]\bf \dfrac{1}{\red{2}} =\dfrac{\red{11}}{2\cdot11}\implies \dfrac{1}{\red{2}} =\dfrac{\red{11}}{22}[/tex]
[tex]\bf \dfrac{1}{\red{2}} =\dfrac{\red{13}}{2\cdot13}\implies \dfrac{1}{\red{2}} =\dfrac{\red{13}}{26}[/tex]
[tex]\bf \dfrac{1}{\red{2}} =\dfrac{\red{17}}{2\cdot17}\implies \dfrac{1}{\red{2}} =\dfrac{\red{17}}{34}[/tex]
==pav38==