👤

se considera expresia E(x)=(2x+3)²-(2x-1)(4-x)-2(x+2)²+3x-2,unde x este un nr real
a)arătați caE(x)=4x²-2x+3,pentru orice număr real x
b)determinați valorile întregi ale lui n, pentru care E(n)< sau egal cu2(n+4)+3​


Răspuns :

Răspuns:

Explicație pas cu pas:

E(x) = (2x + 3)^2 - (2x - 1)(4 -x ) - 2(x+2)^2 + 3x - 2

E(x) = 4x^2 + 2 · 2x · 3 + 9 -8x +2x^2 +4 - x - 2(x^2 + 4x + 4) + 3x - 2

E(x) = 4x^2 + 12x + 9 - 8x + 4 - x - 2x^2 - 8x - 8 + 3x - 2

E(x) = 4x^2 - 2x + 3, ∀ x ∈ R

b) E(n) ≤ 2(n+4) + 3

4n^2 - 2n + 3 ≤ 2n + 8 + 3

4n^2 - 2n - 2n + 3 - 3 - 8 ≤ 0

4n^2 - 4n - 8 ≤ 0

4n^2 - 4n + 1 - 9 ≤ 0

(2n - 1)^2  ≤ 9

|2n - 1| ≤ 3

-3 ≤ 2n - 1 ≤ 3 |+1

-2 ≤ 2n ≤ 4 | :2

-1 ≤ n ≤ 2

n ∈ Z => n ∈ { -1, 0 , 1, 2}

[tex]\bf a)\\ \\ \it E(x)=4x^2+12x+9-8x+2x^2+4-x-2x^2-8x-8+3x-2=4x^2-2x+3\\ \\ \\ \bf b)\\ \\ \it E(n)\leq2(n+4)+3 \Rightarrow 4n^2-2n+3\leq2n+8+3 \Rightarrow 4n^2-4n-8\leq0 \Rightarrow\\ \\ (4n^2-4n+1)-9\leq0 \Rightarrow (2n-1)^2-3^2\leq0 \Rightarrow (2n-1-3)(2n-1+3)\leq 0 \Rightarrow \\ \\ \Rightarrow (2n-4)(2n+2)\leq0 \Rightarrow 2\cdot(n-2)\cdot2\cdot(n+1)\leq0 \Rightarrow (n+1)(n-2)\leq0 \Rightarrow \\ \\ \Rightarrow n\in[-1,\ \ 2]\ \stackrel{n\in\mathbb{Z}}{\Longrightarrow}\ n\in\{-1,\ \ 0,\ \ 1,\ \ 2\}[/tex]