Formula pt suma unei progresii geoemtrice
Sn= b1 × (q^n -1)/(q-1).daca q#1
Sn= q×b1 daca q=1
a) S6= 3 × (2^6 -1)/(2-1) =
3×(2^6-1) =
3×63=189
b) 2,5 = 25/10= 5/2
1,5= 15/10 = 3/2
S5 = 5/2 × ((3/2)^5 -1)/(3/2-1) =
5/2 ×(243/32 -1) / (3/2-2/2)=
5/2 ×(243/32-32/32) / 1/2=
5/2 × 2 × 211/32 = 1055/32
c) b3 =b1 ×q^2
q^2 = 2/8
q= V(2/8)
q= V2/2V2 = 1/2
S8= 8 × ((1/2)^8 -1) / (1/2-1) =
8× ((1/256-1) / (1/2-2/2) =
8× -2 × (1/256 - 256/256) =
-16 × (-255/256) =
16×255 = 4080
d) b1 = -9, b2 = -3
q= b2/b1 = -3/-9 = 1/3
S7 = -9 × ((1/3)^7 -1) / (1/3-1) =
-9 × ((1/2187 -1) / (1/3-3/3)=
-9 × (1/2187 -2187/2187) / (-2/3)=
-9 × (-3/2) × (-2186/2187)=
27/2 × (-2186/2187)=
-1093/81