Răspuns :
1+3+5+…+2019 =
1+3+5+…+2n+1 = n^2
2n-1=2019
2n=2020
n=1010
rad(1010^2) = 1010
Restul pe foaie.
1+3+5+…+2n+1 = n^2
2n-1=2019
2n=2020
n=1010
rad(1010^2) = 1010
Restul pe foaie.
[tex]\it \sqrt{1+3+5+\ ...\ +2019}=\sqrt{1010^2}=1010\\ \\ A=\sqrt{(2020-1)^{2019}:2019}=\sqrt{2019:2019}=\sqrt{2019^{2018}}=2019^{1009}\in\mathbb{N}[/tex]