Răspuns:
ax^2 + bx + c = 0
Relațiile lui Viete :
S = x1 + x2 = - b/2a
P = x1x2 = c/a
x^2 - Sx + P = 0
a)
S = 4
P = 3
=> x^2 - 4x + 3 = 0
b)
S = 1
P = - 20
=> x^2 - x - 20 = 0
c)
S = - 3
P = 2
=> x^2 + 3x - 2 = 0
d)
S = 5/4
P = 3/8
=> x^2 - 5x/4 + 3/8 = 0 sau 8x^2 - 10x + 3 = 0
e)
S = 0
P = - 9
=> x^2 - 9 = 0
f)
S = 6
P = 8,75 = 875/100 = 35/4
=> x^2 - 6x + 35/4 = 0 sau 4x^2 - 24x + 35 = 0
g)
S = 4
P = 1
=> x^2 - 4x + 1 = 0
h)
S = - 2
P = - 1
=> x^2 + 2x - 1 = 0