Răspuns :
Răspuns:
[3^44:(3^10+3^10+3^10)^4+7^0]^51:2^50=
[3⁴⁴:(3¹⁰·3)⁴+7⁰]⁵¹:2⁵⁰=
[3⁴⁴:(3¹¹)⁴+1]⁵¹:2⁵⁰=
(3⁴⁴:3⁴⁴+1)⁵¹:2⁵⁰=
2⁵¹:2⁵⁰=
2⁵¹⁻⁵⁰=
2¹=2
Răspuns: [tex]\bf \red{\underline{~2~}}[/tex]
Explicație pas cu pas:
[tex]\bf \Big[3^{44}:\big(3^{10}+3^{10}+3^{10}\big)^4+7^0\Big]^{51}:2^{50}=[/tex]
[tex]\bf \Big[3^{44}:\big[3^{10}\cdot\big(3^{10-10}+3^{10-10}+3^{10-10}\big)\big]^4+1\Big]^{51}:2^{50}=[/tex]
[tex]\bf \Big[3^{44}:\big[3^{10}\cdot\big(3^{0}+3^{0}+3^{0}\big)\big]^4+1\Big]^{51}:2^{50}=[/tex]
[tex]\bf \Big[3^{44}:\big[3^{10}\cdot\big(1+1+1\big)\big]^4+1\Big]^{51}:2^{50}=[/tex]
[tex]\bf \Big[3^{44}:\big(3^{10}\cdot 3 \big)^4+1\Big]^{51}:2^{50}=[/tex]
[tex]\bf \Big[3^{44}:\big(3^{10+1} \big)^4+1\Big]^{51}:2^{50}=[/tex]
[tex]\bf \Big(3^{44}:3^{11\cdot 4}+1\Big)^{51}:2^{50}=[/tex]
[tex]\bf \Big(3^{44}:3^{44}+1\Big)^{51}:2^{50}=[/tex]
[tex]\bf \Big(3^{44-44}+1\Big)^{51}:2^{50}=[/tex]
[tex]\bf \Big(3^{0}+1\Big)^{51}:2^{50}=[/tex]
[tex]\bf \big(1+1\big)^{51}:2^{50}=[/tex]
[tex]\bf 2^{51}:2^{50}= 2^{51-50}=[/tex]
[tex]\bf 2^{1}= \red{\underline{~2~}}[/tex]
[tex]==pav38==[/tex]