Răspuns :
Explicație pas cu pas:
a)
[tex]2( \frac{ \sqrt{2 } - 1 }{ \sqrt{2} } - \frac{ \sqrt{3} - \sqrt{2} }{2} ) = \\ 2( \frac{2 - \sqrt{2} }{2} - \frac{ \sqrt{3} - \sqrt{2} }{2} ) = \\ 2 \times \frac{2 - \sqrt{2} - \sqrt{3} + \sqrt{2} }{2} = 2 - \sqrt{3} [/tex]
b)
[tex] \frac{5}{ \sqrt{7} - \sqrt{2} } - \frac{10}{ \sqrt{7} + \sqrt{2} } = \\ \frac{5( \sqrt{7} + \sqrt{2}) }{7 - 2} - \frac{10( \sqrt{7} - \sqrt{2}) }{7 - 2} = \\ \frac{5 (\sqrt{7} + \sqrt{2}) - 10( \sqrt{7} - \sqrt{2} ) }{5} = \\ \sqrt{7} + \sqrt{2} - 2 \sqrt{7} + 2 \sqrt{2} = 3\sqrt{7} - \sqrt{2} [/tex]