[tex]\text{Raspuns:} \ \bold{b) \ 2500}[/tex]
[tex]\begin{aligned}{2+4+6+.....+98+x&} {=1+2+3+4+5+......+99}\\\{2(1+2+3+......+49)+x&} {=\frac{99\cdot100}2}\\{2\cdot\frac{49\cdot50}2+x&} {=99\cdot50}\\{49\cdot50+x&} {=4950}\\{2450+x&} {=4950}\\{x&} {=2500}\end{aligned}[/tex]
[tex]\text{Deoarece l-am dat factor comun pe 2 in partea stanga a ecuatiei, putem}\\\text{aplica formula sumei lui Gauss, care spune $\frac{n(n+1)}2=1+2+3+......+n.$}[/tex]
==Luke48==