Răspuns :
Răspuns:
Explicație pas cu pas:
[tex]122-12 \cdot \{183:[(2\cdot3^3\cdot5^3)^4:(2^4\cdot3^7\cdot5^{12})+(2^8)^9:16^{18}-1^{27}\cdot5^0]-3^2\cdot(54-2^4\cdot3)\}=[/tex]
[tex]122-12 \cdot \{183:[(2^4\cdot3^7\cdot5^{12}):(2^4\cdot3^7\cdot5^{12})+(2^8)^9:16^{18}-1\cdot1]-3^2\cdot(54-2^4\cdot3)\}=[/tex]
[tex]122-12 \cdot \{183:[1+(2^8)^9:16^{18}-1\cdot1]-3^2\cdot(54-2^4\cdot3)\}=[/tex]
[tex]122-12 \cdot \{183:[1+2^{8\cdot9}:(2^{4})^{18}-1\cdot1]-3^2\cdot(54-16\cdot3)\}=[/tex]
[tex]122-12 \cdot [183:(1+2^{72}:2^{4\cdot18}-1)-3^2\cdot(54-48)]=[/tex]
[tex]122-12 \cdot [183:(1+2^{72}:2^{72}-1)-3^2\cdot 6]=[/tex]
[tex]122-12 \cdot [183:(1+2^{72-72}-1)-3^2\cdot 6]=[/tex]
[tex]122-12 \cdot [183:(1+2^{0}-1)-9\cdot 6]=[/tex]
[tex]122-12 \cdot [183:(1+1-1)-54]=[/tex]
[tex]122-12 \cdot (183:1-54)=[/tex]
[tex]122-12 \cdot (183-54)=[/tex]
[tex]122-12 \cdot 129=[/tex]
[tex]122-1548=[/tex]
[tex]\boxed{-1426~}[/tex]