Determinați suma numerelor care împărțite la 4 dau câtul 3.
[tex]\it n:4=3\ rest\ r \Rightarrow \begin{cases} \it n=4\cdot3+r \Rightarrow n=12+r\\ \\ \it r<4 \Rightarrow r\in\{0,\ 1,\ 2,\ 3\}\end{cases} \Rightarrow n\in\{12,\ 13,\ 14,\ 15\}\\ \\ \\ 12+13+14+15=54[/tex]
Suma a două numere naturale este egală cu 53. Împărțind numărul
mai mare la numărul mai mic obținem câtul 9 și restul 3.
Determinați cele două numere.
Notăm numerele cu a și b.
[tex]\it a+b=53 \Rightarrow a=53-b\ \ \ \ (1)\\ \\ a:b=9\ rest\ 3 \Rightarrow a=9b+3\ \ \ \ (2)\\ \\ (1),\ (2) \Rightarrow 9b+3=53-b \Rightarrow 9b+b=53-3 \Rightarrow 10b=50 \Rightarrow b=5\ \ \ \ (3)\\ \\ (2),\ (3) \Rightarrow a=9\cdot5+3 \Rightarrow a=48[/tex]
Numerele cerute sunt : 48 și 5