AB || CD AB = 14cm CD = 4cm AD = 6cm BC = 8cm
AD ∧ BC = { M }
Δ MDC asemenea ΔMAB (CD||AB)
MD/MA = MC/MB = CD/AB = 4/14 = 2/7
MD/ (MD + 6) = MC/(MC+8) = 2/7
7MD = 2MD +12 MD = 12/5 cm MD² = 144/25
7MC = 2MC + 16 MC = 16/5 cm MC² = 256/25
MD² + MC² = 400/25 = 16 = CD² ⇒ Δ MCD = Δ dreptunghic (CD = ipotenuza) ⇒
⇒ AM _|_ MB (AD_|_BC) AD ∈AM BC∈BM