👤
Roxibazooka
a fost răspuns

Arătați că numărul a=4²⁰•3+2⁴⁰•5+2⁴⁰ este pătrat perfect.​

Răspuns :

Răspuns: [tex]a=\big(2^{20} \cdot 3\big)^{2} - este~patrat ~perfect[/tex]

Explicație pas cu pas:

[tex]a=4^{20}\cdot3 ^{}+2^{40}\cdot 5+2^{40}[/tex]

[tex]a=(2^2)^{20}\cdot3 ^{}+2^{40}\cdot 5+2^{40}[/tex]

[tex]a=2^{2\cdot20}\cdot3 ^{}+2^{40}\cdot 5+2^{40}[/tex]

[tex]a=2^{40}\cdot3 ^{}+2^{40}\cdot 5+2^{40}[/tex]

[tex]a=2^{40}\cdot\big(3 ^{}+ 5+1\big)[/tex]

[tex]a=2^{40}\cdot 9[/tex]

[tex]a=2^{40}\cdot 3^{2}[/tex]

[tex]a=(2^{20})^{2} \cdot 3^{2}[/tex]

[tex]\boxed{a=\big(2^{20} \cdot 3\big)^{2} - patrat ~perfect}[/tex]

Răspuns:

Explicație pas cu pas:

4^20 = (2^2)^20 = 2^40

a = 2^40*3 + 2^40*5 + 2^40

= 2^40*(3 + 5 + 1)

= 9*2^40

= 3^2*(2^20)^2

= (3*2^20)^2 patrat perfect