👤
Ci1147487
a fost răspuns

20. Arătaţi că următoarele numere sunt pătrate perfecte: a) 2020² - 2020 - 2019; b) 2 + 2¹ + 2² +2³+ 2⁴+ 2⁵ c) 1 + 3 + 5 + ... +49; d) 2019 +2.(1 +2 +3 + ... + 2018).​

Răspuns :

Răspuns:

Explicație pas cu pas:

a)

2020^2 - 2020 - 2019 = 2020*(2020 - 1) - 2019 = 2020*2019 - 2019

= 2019*(2020 - 1) = 2019*2019 patrat perfect

b)

2 + 2 + 4 + 8 + 16 + 32 = 64 = 8*8 patrat perfect

c)

1 + 3 + 5 + ...+ 49 = 1 + 2 + 3 + 4 + 5 + ...+ 49 - (2 + 4 + 6 + ...+ 48)

= 49*50/2 - 2*(1 + 2 + 3 + ...+ 24) = 49*25 - 2*24*25/2 = 49*25 - 24*25

= 25*(49 - 24) = 25*25 patrat perfect

d)

2019 + 2*(1 + 2 + 3 + ...+ 2018) = 2019 + 2*2018*2019/2

= 2019 + 2018*2019 = 2019*(1 + 2018) = 2019*2019 patrat perfect

Explicație pas cu pas:

a)

2020² - 2020 - 2019 =

2020 × (2020 - 1) - 2019 =

2020 × 2019 - 2019 =

2019 × (2020 - 1) =

2019 × 2019 = 2019² => pătrat perfect

b)

2 + 2¹ + 2² +2³+ 2⁴+ 2⁵ =

2 + 2 + 4 + 8 + 16 + 32 =

64 = 8 × 8 = 8² => pătrat perfect

c)

1 + 3 + 5 + ... + 49 =

(1 + 49) × 25 : 2 =

50 × 25 : 2 = 25 × 25 = 25² => pătrat perfect

d)

2019 + 2 × (1 + 2 + 3 + ... + 2018)

2019 + 2 × 2018 × 2019 : 2 =

2019 + 2018 × 2019 =

2019 × (1 + 2018) =

2019 × 2019 = 2019² => pătrat perfect