Răspuns:
ln(x-1)/(x+1)
se foloseste formula
ln` u(x) =u `(x)/ux unde
u(x)=(x-1)/(x+1)
u `(x)=[(x-1) `(x+1)-(x-1)*(x+1) `]/((x+1)²=
[1*(x+1)-(x-1)*1]/(x+1)²=
(x+1-x+1)/(x+1)²=
2/(x+1)²
f `(x)=2/(x+1)²:(x-1)/(x+1)=
2/(x+1)²*(x+1)/(x-1)=2/(x+1)(x-1)=
2/(x²-1)
Explicație pas cu pas: