[tex]\displaystyle\it\\1.~\begin{cases} 2(x+2y)-3(x+3y)=-8\\ 3(2x+y)-2(3x-2y)=7 \end{cases} \Leftrigharrow \begin{cases} 2x+4y-3x-9y=-8\\ 6x+3y-6x+4y=7 \end{cases}\Leftrightarrow \\\begin{cases} -x-5y=-8\\ 7y=7\end{cases} \Leftrightarrow \begin{cases} x=-5y+8\\\boxed{\it y=1}\end{cases} \Leftrightarrow \begin{cases} \boxed{\it x=3}\\\boxed{\it y=1} \end{cases}[/tex]
[tex]\displaystyle\it\\2.~RT||NP \Leftarrow \frac{MR}{MN}=\frac{MT}{MP}~(Reciproca~T.Thales).\\Inlocuind,~am~obtine~ca~\frac{11}{20}=\frac{18}{46},~ceea~ce~este~fals,~deci~RT~si~NP\\nu~sunt~paralele.[/tex]