Răspuns:
Explicație pas cu pas:
MN || AC aplicam teorema fundamentala asemănării ⇒ ΔBMN ~ ΔBAC
[tex]\large \bf \dfrac{MN}{AC} = \dfrac{BM}{AB} = \dfrac{BN}{BC}[/tex]
MP || BC aplicam teorema fundamentala asemănării ⇒ ΔAMP ~ ΔABC
[tex]\large \bf \dfrac{PM}{BC} = \dfrac{AM}{AB} = \dfrac{AP}{AC}[/tex]
[tex]\it~~[/tex]
[tex]\large \bf \dfrac{MN}{AC} + \dfrac{MP}{BC} = \dfrac{BM}{AB} + \dfrac{AM}{AB}\implies[/tex][tex]\large \bf \dfrac{MN}{AC} + \dfrac{MP}{BC} = \dfrac{BM+AM}{AB} =\dfrac{AB}{AB} \implies\boxed{ \bf \dfrac{MN}{AC} + \dfrac{MP}{BC} =1}[/tex]