Răspuns:
f `(x)=0
a)f(x)=(2x²-x⁴)⁵
D=R
f `(x)=5(4x-4x³)⁴
5(4x-4x³)⁴=0=>
4x-4x³=0
4x(1-x²)=0=>
x1=0
1-x²=0
1=x²
x=±1
S={-1,0,1}
b)f(x)=√(2x-x²)
2x-x²≥0
x(2-x)≥0
=>x∈[0,2]
f `(x)=(2-2x)/2√(2x-x²)
2-2x=0 2=2x
x=1
S={1}
e) f(x)=√x*lnx
D=(0,+∞)
f `(x)=(X `*lnx+x ln `(x))/2√x*lnx=
(lnx+x/x)/2√x*lnx=(lnx+1)/2√x*lnx)
lnx+1=0
lnx= -1
x=e⁻¹
Explicație pas cu pas: