1.a) sinC = AB/BC = √5 /5 AB =√5/5 ·BC AB² + AC² = BC² BC² /5 + 64 = BC²
4BC² /5 = 64 BC² = 80 BC = 4√5cm AB = 4cm P = AB +BC+AC = 12+4√5
b) AB = 4cm; sinC =√5 /5 BC = AB/sinC = 4√5 cm AC² = 80- 16 = 64 AC = 8cm
sinB = AC/BC = 8/4√5 = 2√5 /5 (<C = arcsin√5 /5; <B = arcsin 2√5 /5 calculezi si cauti in tabele)
c) unde-i D?
2. a) BC =20cm tgC = AB/AC = 3/4 AC = 4AB /3 AB² + 16AB² /9 = 400
25AB² /9 = 400 AB² = 400·9 /25 AB = 12cm AC = 16cm P = 48cm
b) in Δ MEC cosC = MC/EC EC=MC/cosC = BC/2 ·BC/AC = 400/2·16 = 12,5cm
c)A ABME = A Δ ABM + A Δ MAE
A Δ ABM = [AB·AC/2]/2 = 12·16/4 = 48cm²
AΔAME = (AE·AB/2 )/2 = [(AC - EC)·AB/2 ] /2 = (16-12,5)·6/2 = 21/2 = 11,5cm²
A ABME = 59,5cm²