👤

Calculați:
[(3 3/5-1 3/10):(5/2-3 1/3×5/3+3/4)+2 7/25]:2/15
❤​


Răspuns :

Răspuns:

[tex]\color{CC0000}\Large\boxed{\bf \dfrac{7983}{830}~~sau~~9 \dfrac{513}{830}}[/tex]

Explicație pas cu pas:

Buna!

[tex]\bf \bigg[\bigg(3 \dfrac{3}{5} -1 \dfrac{3}{10}\bigg):\bigg(\dfrac{5}{2}-3 \dfrac{1}{3}\cdot\dfrac{5}{3}+\dfrac{3}{4}\bigg)+2\dfrac{7}{25}\bigg]:\dfrac{2}{15}=[/tex]

[tex]\bf \bigg[\bigg(\dfrac{15+3}{5} -\dfrac{10+3}{10}\bigg):\bigg(\dfrac{5}{2}-\dfrac{9+1}{3}\cdot\dfrac{5}{3}+\dfrac{3}{4}\bigg)+\dfrac{50+7}{25}\bigg]:\dfrac{2}{15}=[/tex]

[tex]\bf \bigg[\bigg(\dfrac{18}{5} -\dfrac{13}{10}\bigg):\bigg(\dfrac{5}{2}-\dfrac{10}{3}\cdot\dfrac{5}{3}+\dfrac{3}{4}\bigg)+\dfrac{57}{25}\bigg]:\dfrac{2}{15}=[/tex]

[tex]\bf \bigg[\bigg(\dfrac{36}{10} -\dfrac{13}{10}\bigg):\bigg(\dfrac{5}{2}-\dfrac{50}{9}+\dfrac{3}{4}\bigg)+\dfrac{57}{25}\bigg]\cdot\dfrac{15}{2}=[/tex]

[tex]\bf \bigg[\dfrac{23}{10}:\bigg(\dfrac{90}{36}-\dfrac{200}{36}+\dfrac{27}{36}\bigg)+\dfrac{57}{25}\bigg]\cdot\dfrac{15}{2}=[/tex]

[tex]\bf \bigg[\dfrac{23}{10}:\bigg(-\dfrac{83}{36}\bigg)+\dfrac{57}{25}\bigg]\cdot\dfrac{15}{2}=[/tex]

[tex]\bf \bigg(-\dfrac{23}{10}\cdot\dfrac{36}{83}+\dfrac{57}{25}\bigg)\cdot\dfrac{15}{2}=[/tex]

[tex]\bf \bigg(-\dfrac{23}{\not10}\cdot\dfrac{\not36}{83}+\dfrac{57}{25}\bigg)\cdot\dfrac{15}{2}=[/tex]

[tex]\bf \bigg(-\dfrac{23}{5}\cdot\dfrac{18}{83}+\dfrac{57}{25}\bigg)\cdot\dfrac{15}{2}=[/tex]

[tex]\bf \bigg(-\dfrac{414}{415}+\dfrac{57}{25}\bigg)\cdot\dfrac{15}{2}=[/tex]

[tex]\bf -\dfrac{414}{415}\cdot\dfrac{15}{2}+\dfrac{57}{25}\cdot\dfrac{15}{2}=[/tex]

[tex]\bf -\dfrac{\not414}{\not415}\cdot\dfrac{\not15}{\not2}+\dfrac{57}{\not25}\cdot\dfrac{\not15}{2}=[/tex]

[tex]\bf -\dfrac{207}{83}\cdot\dfrac{3}{1}+\dfrac{57}{5}\cdot\dfrac{3}{2}=[/tex]

[tex]\bf -\dfrac{621}{83}+\dfrac{171}{10}=[/tex]

[tex]\bf -\dfrac{621\cdot 10}{830}+\dfrac{171\cdot 83}{830}=[/tex]

[tex]\bf \dfrac{-6210+14193}{830}=[/tex]

[tex]\Large \boxed{\boxed{\bf \dfrac{7983}{830}~~~sau~~~9 \dfrac{513}{830}}}[/tex]

PS: Daca esti pe telefon te rog să glisezi spre dreapta pentru a vedea rezolvarea completă

#copaceibrainly