Răspuns:
Explicație pas cu pas:
[tex]a) \frac{16}{4} si\frac{2}{21} => \frac{16*21}{4*21}si\frac{2*4}{21*4}=>\frac{336}{84}si\frac{8}{84}\\\\b) \frac{9}{6} si\frac{3}{4}=>\frac{9*3}{6*2} si\frac{3*3}{4*3}=>\frac{27}{12} si\frac{9}{12}\\\\c)\frac{6}{8} si\frac{4}{5}=>\frac{6*5}{8*5} si\frac{4*8}{5*8}=>\frac{30}{40} si\frac{32}{40}\\\\d)\frac{5}{15} si\frac{7}{4}=>\frac{5*4}{15*4} si\frac{7*15}{4*15}=>\frac{20}{60} si\frac{105}{60}\\\\e)\frac{2}{12} si\frac{3}{5}=>\frac{2*5}{12*5} si\frac{3*12}{5*12}=>\frac{10}{60} si\frac{36}{60}[/tex]
[tex]f) \frac{4}{12} si\frac{3}{4}=>\frac{4*1}{12*1} si\frac{3*3}{4*3}=>\frac{4}{12} si\frac{9}{12}\\\\g)\frac{4}{18} si\frac{2}{5}=>\frac{4*5}{18*5} si\frac{2*18}{5*18}=>\frac{20}{90} si\frac{36}{90}\\\\h)\frac{3}{7} si\frac{14}{21}=>\frac{3*3}{7*3} si\frac{14*1}{21*1}=>\frac{9}{21} si\frac{14}{21}[/tex]