Răspuns:
Explicație pas cu pas:
1a)
(x + y)*a^2 - (x + y)*b^2 = (x + y)(a^2 - b^2) = (x + y)(a + b)(a - b)
b)
ax^2 + bx^2 - ay^2 - by^2 = x^2(a + b) - y^2(a + b)
= (a + b)(x^2 - y^2) = (a + b)(x + y)(x - y)
c)
49a^2 + 14a(2x + 1) + (2x + 1)^2
= (7a + 2x + 1)^2
d)
(√3 - x)^2 + 6(√3 - x) + 9 = (√3 - x + 3)^2
___________________
2a)
3ax^2 + 4ax^3 + 6a^2x + 8a^2x^2
= 3ax(x + 2a) + 4ax^2(x + 2a)
= (x + 2a)(3ax + 4ax^2) = ax(x + 2a)(3 + 4x)
b)
12a^2b^3 + 4a^2b + 9ab^2 + 3a
= 3ab^2(4ab + 3) + a(4ab + 3)
= a(4ab + 3)(3b^2 + 1)
c)
2xy + 3x^2y - 4x^2y^2 - 6x^3y^2
= 2xy(1 - 2xy) + 3x^2y(1 - 2xy)
= xy(1 - 2xy)(2 + 3x)
d)
5x^2 + 2a^2x - 10ax - 4a^3
= 5x(x - 2a) + 2a^2(x - 2a)
= (x - 2a)(5x + 2a^2)