Răspuns :
a . √ x + 1 = x -5
conditie x+1 ≥0 x-5 ≥ 0
x ≥ -1 si x ≥ 5 solutia
x ∈ [ -1 , ∞ ) Π [ 5 , ∞) = [5 , ∞ )
x +1 = x² -10x + 25
0 = x² -11x +24 Δ=25 x ₁ = 8 x ₂ = 3 fals
b . √x-1 = x -7
conditie x -1 ≥0 si x -7≥0
x ≥ 1 x≥ 7
x ∈ [ 7 , ∞ )
x -1 = x² -14x +49
0= x² - 15x +50 Δ = 225 -200=25
x₁ =5 fals x₂=10
c. √x +1 = 2x+1
conditie x+1 ≥ 0 si 2x +1≥0
x≥ -1 x≥ -1/2
x ∈ [ -1/2 , ∞ )
x +1 = 4x² + 4x +1
0= 4x² + 3x ⇒ x₁ =0 x₂=--3/4 fals
conditie x+1 ≥0 x-5 ≥ 0
x ≥ -1 si x ≥ 5 solutia
x ∈ [ -1 , ∞ ) Π [ 5 , ∞) = [5 , ∞ )
x +1 = x² -10x + 25
0 = x² -11x +24 Δ=25 x ₁ = 8 x ₂ = 3 fals
b . √x-1 = x -7
conditie x -1 ≥0 si x -7≥0
x ≥ 1 x≥ 7
x ∈ [ 7 , ∞ )
x -1 = x² -14x +49
0= x² - 15x +50 Δ = 225 -200=25
x₁ =5 fals x₂=10
c. √x +1 = 2x+1
conditie x+1 ≥ 0 si 2x +1≥0
x≥ -1 x≥ -1/2
x ∈ [ -1/2 , ∞ )
x +1 = 4x² + 4x +1
0= 4x² + 3x ⇒ x₁ =0 x₂=--3/4 fals