Răspuns :
Răspuns:
Explicație pas cu pas:
1) f:R ---> R ; f(x) = 3x-1
a) ordonata = -4 <=> f(x) = -4 => 3x-1 = -4 => 3x = -4+1 =>
3x = -3 => x = -3:3 => x = -1 => A (-1 ; -4)
b) coordonatele egale <=> x = f(x) =>
x = 3x-1 => 3x-x = 1 => 2x = 1 => x = 1/2 => B(1/2 ; 1/2)
3·1/2 - 1 = 3/2 - 1 = 3/2 - 2/2 = 1/2
c) abscisa egala cu -2 <=> x = -2 =>
f(-2) = 3·(-2) - 1 = -6 -1 = -7 => C(-2 ; -7)
d) ordonata egala cu opusa abscisei <=> f(x) = -x =>
3x-1 = -x => 4x = 1 => x = 1/4
f(1/4) = 3/4 - 1 = 3/4 - 4/4 = -1/4 => D(1/4 ; -1/4)
2) f:R --> R ; f(x) = 3x+a ; A(-2 ; -3) ∈ Gf
A(-2 ; -3) ∈ Gf <=> f(-2) = -3 =>
3·(-2)+a = -3 <=> -6+a = -3 =>
a = 6-3 => a = 3