Răspuns :
Răspuns:
Explicație pas cu pas:
[tex]2=a^{m} , 3=a^{n} \\\\ a^{5m+2n} =a^{5m} a^{2n} =(a^{m})^{5} (a^{n})^{2}=2^{5} 3^{2} =288\\ \\ \\ \frac{3m}{2n} -log_{3} 2=\frac{3log_{a} 2}{2log_{a} 3} -log_{3} 2=\frac{3}{2} log_{3} 2-log_{3} 2=(\frac{3}{2} -1)log_{3} 2=\frac{1}{2} log_{3} 2=\\ \\= log_{3} 2^{\frac{1}{2} } =log_{3} \sqrt{2}[/tex]