Răspuns :
[tex]AG = 2\\AG = \frac{2}{3} AS\\GS = \frac{1}{3} AS\\[/tex]
⇒AS = 3
___________________
[tex]MG = 3\\MG = \frac{1}{3} ME\\GE = \frac{2}{3} ME[/tex]
⇒ME = 9
Daca G este punctul de intersectie al medianelor=> {G}-centrul de greutate al triunghiului, deci:
a) AG=2
AS=?
AG=[tex]\frac{2}{3}AS[/tex]
GS=[tex]\frac{1}{3}AS[/tex]
AS=AG+GS
=>AS=3
b) MG=3
ME=?
MG=[tex]\frac{1}{3}ME[/tex]
GE=[tex]\frac{2}{3} ME[/tex]
ME=MG+GE
=>ME=9
ME=