Răspuns :
[tex]\displaystyle\bf\\15)\\a)\\\\3^{15}+3^{16}+3^{17}=\\\\=3^{15}+3^{15+1}+3^{15+2}=\\\\=3^{15}+3^{15}\times3^1+3^{15}\times3^2=\\\\=3^{15}(1+3^1+3^2)=3^{15}(1+3+9)=3^{15}\times13~\vdots~13\\\\\\b)\\\\2^{22}+2^{24}+2^{26}=\\\\=2^{22}+2^{22+2}+2^{22+4}=\\\\=2^{22}+2^{22}\times2^2+2^{22}\times2^4=\\\\=2^{22}(1+2^2+2^4)=\\\\=2^{22}(1+4+16)=2^{22}\times21~\vdots~21[/tex]
Explicație pas cu pas:
A=3^15+3^16+3^17 Sa se imparta la 13.
A=(3^15+16+17) :13
A=(3^48) :13
Amplificam cu 3 si va fi
A=48 care nu se imparte la 13