Răspuns:
Explicație pas cu pas:
3.
a)
4√3 - I2√3 - 3√2I - (-4√2) = 4√3 - (3√2 - 2√3) + 4√2 = 4√3 - 3√2 + 2√3 + 4√2 = 6√3 + √2
b)
3√5 - (4√6 - 2√5) + I√5 - √6I
= 3√5 - 4√6 + 2√5 + √6 - √5 = 4√5 -3√6
c)
2√7 - (I√7 - 4I + I3 - √7I) = 2√7 - (4 - √7 + 3 - √7) = 2√7 - (7 - 2√7)
= 2√7 - 7 + 2√7 = 4√7 - 7
d)
I√10 + √11I - I√11 - √10I + I-√10 - √11I
= √10 + √11 - (√11 - √10) + √10 + √11 = √10 + √11 - √11 + √10 + √10 + √11
= 3√10 + √11
________________________
4.
a)
(√3 - 1)x - 2(2 - √3)x - 3√3x = √3x - x - 4x + 2√3x - 3√3x = -5x
b)
-2√3a + 5a - (3√2 - √12)a + 3√2a
= -2√3a + 5a - 3√2a + √12a + 3√2a
= -2√3a + 5a + 2√3a = 5a
c)
(√7 - √5)x + (2√5 - √7)x + (3√5 - 2√7)x
= √7x - √5x + 2√5x - √7x + 3√5x - 2√7x
= -2√7x + 4√5x
d)
(√2 - 1)a + (3√2 - 4)a + (5√2 - 7)a + a
= √2a - a + 3√2a - 4a + 5√2a - 7a + a
= 9√2a - 11a