Răspuns :
Răspuns:
c(a+2)= 8(b+3) => (a+2)= [tex]\frac{8(b+3)}{c}[/tex] => c= [tex]\frac{8(b+3)}{a+2}[/tex]
c*10=(b+3) (c+4) => (b+3)= [tex]\frac{10*c}{c+4}[/tex]
(a+2)*(c+4)= 80 => (a+2) = [tex]\frac{80}{c+4}[/tex] => c+4 = [tex]\frac{80}{a+2}[/tex]
a= [tex]\frac{80}{c+4}[/tex] - 2 = [tex]\frac{80- 2c -8}{(c+4)}[/tex]= [tex]\frac{72-2c}{c+4}[/tex]
b= [tex]\frac{10*c}{c+4}[/tex] -3= [tex]\frac{10c-3c-12}{c+4}[/tex] = [tex]\frac{7*c-12}{c+4}[/tex]
c= [tex]\frac{8*10*c}{(c+4)}[/tex] * [tex]\frac{(c+4)}{80}[/tex] =[tex]\frac{80c}{80}[/tex] c=1
1+4= 80:(a+2) a+2= 80:5 a= 16-2= 14 a= 14
b+3= 10: 5=2 b= 2-3=-1 b= -1
verif 14+2:8= 16:8= 2
-1+3:1= 2
10: 1+4= 10:5= 2