👤
a fost răspuns

cum rezolv limita[tex] \lim_{x\to \infty} \sqrt[3]{x}-\sqrt[5]{x}[/tex] asta?

Răspuns :

[tex]\lim_{x \to \infty}(\sqrt[3]{x}- \sqrt[5]{x} )= \lim_{x \to \infty}[\sqrt[3]{x}(1-\frac{\sqrt[5]{x} }{\sqrt[3]{x} } )]\\\frac{\sqrt[5]{x} }{\sqrt[3]{x} }=\frac{x^{\frac{1}{5} }}{x^{\frac{1}{3} }}=\frac{1}{x^{\frac{2}{15} }} \\\lim_{x \to \infty}[\sqrt[3]{x}(1-\frac{\sqrt[5]{x} }{\sqrt[3]{x} } )]=\lim_{x \to \infty}[x^{\frac{1}{3} }(1-\frac{1}{x^{\frac{2}{15} }} )]=+\infty(1-\frac{1}{+\infty})=+\infty(1-0)=+\infty*1=+\infty=> \lim_{x \to \infty}(\sqrt[3]{x}- \sqrt[5]{x} )=+\infty[/tex]