Notam cu abcd cifrurile seifului
a, b, c, d - cifre
a, b,c,d ∈ {0,1,2,3}
a ≠ b ≠ c ≠ d
"distincte" inseamna cifre diferite intre ele
!!! Observatie abcd fiiind cifrul unui seif, acesta poate incepe si cu zero!!!
a ∈ {0,1,2,3} - ia 4 valori
b ∈ {0,1,2,3} - ia 3 valori ( deorece b ≠ a )
c ∈ {0,1,2,3} - ia 2 valori (deoarece c ≠ b ≠ a)
c ∈ {0,1,2,3} - ia 1 valoare (deoarece d ≠ c ≠ b ≠ a)
Conform teoremei produsului ⇒ vom avea 4 × 3 × 2 × 1 = 24 de cifruri putem forma din patru cifre distincte
Exemple: 1204, 1043, 0431, etc......
Raspuns: 24 de cifruri putem forma din patru cifre distincte
Notatii:
∈ - apartine
≠ - diferit
⇒ - rezulta