Răspuns :
[tex]formulele \: sunt \\ {(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2} \\ {(a - b)}^{2} = {a}^{2} - 2ab + {b}^{2} \\ (a + b)(a - b) = {a}^{2} - {b}^{2} \\ a) \: {x}^{2} + 2x + 1 \\ b) \: {x}^{2} - 4x + 4 \\ c) \: {4x}^{2} + 12x + 9 \\ d) \: {9x}^{2} - 6x + 1 \\ e) \: {9x}^{2} - 1 \\ f) \: \frac{1}{9} {a}^{2} - {b}^{2} [/tex]
(x+1)²=x²+2x+1
(x-2)²=x²−4x+4
(2x+3)²=4x²+12x+9
(3x-1)²= 9x−6x+1
(3x-1)*(3x+1)=9x² −1
(1/3*a-b) * (1/3*a+b)=a²/9 - b²
Succes!Sper că te-am ajutat!