Răspuns :
(1+3+5+7+…+2001+2003)-(2+4+6+8+…2000+2002)
[(1+2+3+…+2003)-2+4+6+…+2002]-2(1+2+3+…+1001)
(2003*2004:2-2*1001*1002:2)-2*1001*1002:2
(2003*1002-1001*1002)-1001*1002
2003*1002-2*1001*1002
1002(2003+2002)
1002*4005
4013010
Răspuns:
1+3+5+7+...+2001+2003=2(0+1+2+3+...+1001)+(1+1+1+1+...+1)=(2×1001×1002) /2+1002=1003002+1002
2+4+6+8+...+2000+2002=
2(1+2+3+4+...+1000+1001)=2×[1001× (1001+1)/2] =2×1001×1002 /2=1003002
Rezultatul
(1+3+5+7+...+2001+2003)-(2+4+6+8+...+2000+2002)=(1003002+1002)-1003002=1002
Explicație pas cu pas: