Răspuns :
Răspuns:
Explicație pas cu pas:
MA⊥(ABC), deci MA⊥AB, MA⊥AC, MA⊥AD. MA=12cm.
m(∡(MBC),(ABC))=m(∡(MB,BC)), deoarece AB⊥BC (ABCD dreptunghi) si deci, dupa T3⊥, si MB⊥BC, deci ∡MBA este unghi liniar a planelor (MBC) si (ABC). ⇒m(∡MBA)=30°. La fel, m(∡MDA)=60°.
a) In ΔMBA, dreptunghic in A, m(∡MBA)=30°, deci MB=2·MA=2·12=24cm.
T.P.⇒AB²=MB²-MA²=24²-12²=12²·2²-12²=12²·(2²-1)=12²·3. Deci AB=12√3cm.
In ΔMDA, m(∡MDA)=60°, deci m(∡DMA)=30°, ⇒AD=(1/2)·MD=x, Atunci MD=2x. Dupa T.P. ⇒MD²-AD²=MA², ⇒(2x)²-x²=12², ⇒3x²=12², ⇒x²=12²/3= 48=16·3. deci x=√(16·3)=4√3cm=AD=BC.
b) d(M,BD)=?? d(A,(MBD))=???
In ΔABD, BD²=AB²+AD²=(12√3)²+(4√3)²=12²·3+4²·3=4²·3²·3+4²·3=4²·30.
Deci BD=4√30cm. Trasam AE⊥BD, E∈BD. Atunci , dupa T3⊥, ⇒ME⊥BD, deci ME=d(M,BD).
Din formula ariei in ΔABD, ⇒AB·AD=BD·AE, ⇒12√3·4√3=4√30·AE, ⇒
AE=(12·3·4)/(4·√30)=(12·3·√30)/30=6√30/5.
Din ΔMAE, ME²=MA²+AE²=12²+(6√30/5)²=144+(36·30)/25=(144·25+36·30)/25=6²·130/25. deci ME=(6/5)·√130cm=d(M,BD).
Trasam AF⊥ME, F∈ME. Atunci AF= d(A,(MBD)).
Din ΔMAE, din formula ariei, ⇒MA·AE=ME·AF, ⇒12·(6/5)·√30=(6/5)·√130·AF, ⇒AF=12√30/√130=12·(√(3/13)=(12/13)·√39cm=d(A,(MBD)).