ΔABE-echi
AB=24cm
M∉(ABC)
AM=BM=CM=16
d[M;(ABC)]=?
d[M;(ABC)]=MO
o centrul ΔABC⇒DO=Dc supra 3
ΔABC-echi ⇒h=l√3 supra 2
DE= 24√3 supra 2 x 12√3
Do=12√3 supra 3 =4√3
AB=ΔABM - isoscel
MD-h
⇒MD-med ⇒AD=DB= AB supra 2 =12
In ΔDMB-dreptungic ⇒DM²=MB²-DB²
DM²=24²-12²
DM²=12²(2²-1)
DM²=12²x3
Dm=12√3
In ΔDOM-dreptunghic⇒MO²=MD²-DO²
MO²=432-48
Mo²=384
MO=8√6
d[M;(ABC)]=MO
MO=8√6
⇒d[M;(ABC)]=8√6