Răspuns :
Ai desenul atasat.
Notam AD=DE=EF=FG=GC=a
Perpendicularele din A, D, E, F si G pe BC sunt paralele si determina, pe AC, rapoarte egale:
[tex] \frac{MN}{NP} [/tex] = [tex] \frac{AD}{DE} [/tex]=[tex] \frac{a}{a} [/tex] = 1
[tex] \frac{RC}{RQ} [/tex] = [tex] \frac{GC}{GF} [/tex]=[tex] \frac{a}{a} [/tex] = 1
[tex] \frac{MP}{CQ} [/tex] = [tex] \frac{AE}{CF} [/tex]=[tex] \frac{2a}{2a} [/tex] = 1
[tex] \frac{NP}{NC} [/tex] = [tex] \frac{DE}{DC} [/tex]=[tex] \frac{a}{4a} [/tex] = [tex] \frac{1}{4} [/tex]
[tex] \frac{MC}{NR} [/tex] = [tex] \frac{AC}{DG} [/tex]=[tex] \frac{5a}{3a} [/tex] = [tex] \frac{5}{3} [/tex]
[tex] \frac{MQ}{NC} [/tex] = [tex] \frac{AF}{DC} [/tex]=[tex] \frac{3a}{4a} [/tex] = [tex] \frac{3}{4} [/tex]
[tex] \frac{PC}{MQ} [/tex] = [tex] \frac{EC}{AF} [/tex]=[tex] \frac{3a}{3a} [/tex] = 1
Notam AD=DE=EF=FG=GC=a
Perpendicularele din A, D, E, F si G pe BC sunt paralele si determina, pe AC, rapoarte egale:
[tex] \frac{MN}{NP} [/tex] = [tex] \frac{AD}{DE} [/tex]=[tex] \frac{a}{a} [/tex] = 1
[tex] \frac{RC}{RQ} [/tex] = [tex] \frac{GC}{GF} [/tex]=[tex] \frac{a}{a} [/tex] = 1
[tex] \frac{MP}{CQ} [/tex] = [tex] \frac{AE}{CF} [/tex]=[tex] \frac{2a}{2a} [/tex] = 1
[tex] \frac{NP}{NC} [/tex] = [tex] \frac{DE}{DC} [/tex]=[tex] \frac{a}{4a} [/tex] = [tex] \frac{1}{4} [/tex]
[tex] \frac{MC}{NR} [/tex] = [tex] \frac{AC}{DG} [/tex]=[tex] \frac{5a}{3a} [/tex] = [tex] \frac{5}{3} [/tex]
[tex] \frac{MQ}{NC} [/tex] = [tex] \frac{AF}{DC} [/tex]=[tex] \frac{3a}{4a} [/tex] = [tex] \frac{3}{4} [/tex]
[tex] \frac{PC}{MQ} [/tex] = [tex] \frac{EC}{AF} [/tex]=[tex] \frac{3a}{3a} [/tex] = 1