👤

Mulțumesc anticipat!
Ex.4


Mulțumesc Anticipat Ex4 class=

Răspuns :

Răspuns:

Explicație pas cu pas:

Vezi imaginea Augustindevian
Rayzen

4.

a = √(2002•2003•2004•2005+1)

Notez 2002 = x.

a = √[x(x+1)(x+2)(x+3)+1]

a = √[x(x+3)(x+1)(x+2)+1]

a = √[(x²+3x)(x²+3x+2)+1]

a = √[(x²+3x)²+2(x²+3x)+1]

a = √(x²+3x+1)²

a = √(2002²+3•2002+1)²

a = 2002²+3•2002+1 ∈ ℚ

b = ∛(2003•2005³-2004•2002³)

Notez 2003 = x.

x•(x+2)³-(x+1)•(x-1)³ =

= x(x³+6x²+12x+8)-(x+1)(x³-3x²+3x-1)

= x(x³-x³+9x²-9x+9) - x³+3x²-3x+1

= 9x³+9x²+9x - x³+3x²-3x+1

= 8x³+12x²+6x+1

= (2x+1)³

= (2•2003+1)³

= (4007)³

b = ∛(4007)³ = 4007 ∈ ℚ