Răspuns :
Pentru a imparti doua fractii se inmulteste prima fractie cu inversa celei de-a doua.
Se foloseste si formula x²-y²=(x-y)(x+y). Se obtine:
[tex]...=\dfrac{3a+2}{a-\sqrt3}\cdot\dfrac{5(a^2-3)}{2(3a+2)}=\dfrac{5(a-\sqrt3)(a+\sqrt3)}{2(a-\sqrt3)}=\dfrac{5(a+\sqrt3)}{2}[/tex]
Se foloseste si formula x²-y²=(x-y)(x+y). Se obtine:
[tex]...=\dfrac{3a+2}{a-\sqrt3}\cdot\dfrac{5(a^2-3)}{2(3a+2)}=\dfrac{5(a-\sqrt3)(a+\sqrt3)}{2(a-\sqrt3)}=\dfrac{5(a+\sqrt3)}{2}[/tex]
(3a+2)/(a-√3)*(5a²-15)/(4+6a)
(3a+2)(/a-√3)*5(a-√3)*(a+√3)/2(2+3a)
simplifici pe diagonala 3a+2 si pe cealalta diagonala a-√3
5(a+√3)/2
(3a+2)(/a-√3)*5(a-√3)*(a+√3)/2(2+3a)
simplifici pe diagonala 3a+2 si pe cealalta diagonala a-√3
5(a+√3)/2