Răspuns:
1. rad((a - 2)^2) + rad((b - 3)^2) <= 0
| a - 2 | + | b - 3 | <= 0
| x | nu poate fi < 0
=> Modulii sunt egali cu 0.
a - 2 = 0 => a = 2
b - 3 = 0 => b = 3
a^-3 + b^-2 =
= (1/2)^3 + (1/3)^2 =
= 1/8 + 1/9 (amplif. cu 9, resp. 8) =
= 9/72 + 8/72 =
= 17/72
2. a = rad(3 + rad(5))
b = rad(3 - rad(5))
a) a^2 + b^2 =
= | 3 + rad(5) | + | 3 - rad(5) | =
= 3 + rad(5) + 3 - rad(5) =
= 6 € R
b) ab =
= rad((3 + rad(5))(3 - rad(5))) =
= rad(3^2 - rad(5)^2) =
= rad(9 - 5) =
= rad(4) =
= 2 € R
p1 = A
p2 = F