Răspuns :
b = 1 + 3 + 5 + 7 + 9 + ....... + 2019
b=(1+2+3+...+2019)-(2+4+6+...+2018)
b=2019x2020/2 - 2x(1+2+3+...+1009)
b=2019x1010-2x 1009x1010/2
b=2019x1010-1009x1010
b=1010(2019-1009)
b=1010x1010
b=1010²
Succes!
Răspuns:
Adevarat!
Explicație pas cu pas:
1 + 3 + 5 + 7 + 9 + ..... + 2019
Intre numerele impare exista numerele pare.
⇒ b = (1 + 2 + 3 + ..... + 2019) - (2 + 4 + 6 + ..... + 2018)
b = 2019 × (2019 + 1) ÷ 2 - 2(1 + 2 + 3 + ..... + 1009)
b = 2019 × 2020 ÷ 2 - 2 × 1009 × (1009 + 1) ÷ 2
b = 2019 × 1010 - 2 × 1009 × 1010 ÷ 2
b = 1010(2019 - 1009)
b = 1010 × 1010
b = 1010² ⇒ b → patratul unui numar natural