Răspuns :
a) 2020² - 2020 - 2019 =
= 2020•(2020-1) - 2019
= 2020•2019 - 2019 =
= 2019•(2020-1) =
= 2019•2019 =
= 2019²
b) S = 2+2¹+2²+2³+2⁴+2⁵
2S = 2²+2²+2³+2⁴+2⁵+2⁶
----------------------------------------------
2S - S = 2⁶+2²-2¹-2 = 2⁶+4-4 = 2⁶
S = (2³)²
c) 1+3 = [(3+1)/2]² = 2²
1+3+5 = [(5+1)/2]² = 3²
1+3+5+7 = [(7+1)/2]² = 4²
⋮
1+3+5+7+...+49 = [(49+1)/2]² = 25²
d) 2019+2•(1+2+3+...+2018) =
= 2019+2•[2018•(2018+1)/2] =
= 2019+2018•2019 =
= 2019•(1+2018) =
= 2019•2019 =
= 2019²
Răspuns:
Explicație pas cu pas:
a)
2020² - 2020 - 2019 =
= 2020 × ( 2020 - 1 ) - 2019 =
= 2020 × 2019 - 2019 =
= 2019 × ( 2020 - 1 ) =
= 2019 × 2019 =
= 2019² → patrat perfect
_____________________
b)
2 + 2¹ + 2² + 2³ + 2⁴ + 2⁵ =
= 2 + 2 + 4 + 8 + 16 + 32 =
= 64 =
= 8² → patrat perfect
_______________________________
c)
1 + 3 + 5 + .... + 49 =
→ stabilesc cati termeni are suma numerelor impare
( 49 - 1 ) : 2 + 1 = 48 : 2 + 1 = 25 termeni are suma
→ aplic formula sumei lui Gauss:
= 25 × ( 1 + 49 ) : 2 =
= 25 × 50 : 2 =
= 25 × 25 =
= 25² → patrat perfect
___________________
d)
2019 + 2 × ( 1 + 2 + 3 + ..... + 2018 ) =
= 2019 + 2 × 2018 × ( 1 + 2018) : 2 =
= 2019 + 2018 × 2019 =
= 2019 × ( 1 + 2018 ) =
= 2019 × 2019 =
= 2019² → patrat perfect