Răspuns :
Răspuns:
Explicație pas cu pas:
x1=0 => 0+0+n=0 => n=0
x2=1 => 1+m+0=0 => m=-1
X4 + x2 + 1 = x4 +2x2 -2x2 +x2 +1 = (x4+2x2 +1) - x2 = (x2+1)^2-x2=
= (x2+1+x)(x2+1-x)
[tex]f = X^4+mX^2+n\\ \\ a)\\\\f(0) = 0\Rightarrow 0+0+n = 0\Rightarrow \boxed{n = 0}\\ f(1) = 0\Rightarrow 1+m +n = 0 \Rightarrow 1+m+0 = 0 \Rightarrow \boxed{m = -1}\\ \\ b) \\\\ f = X^4+X^2+1 = (X^2+1)^2-X^2 = \big[(X^2+1)-X\big]\big[(X^2+1)+X\big] \\\\f =(X^2-X+1)(X^2+X+1)[/tex]