Răspuns :
[tex]\displaystyle\\9^x-4\cdot3^x+3=0\\\\(3^2)^x-4\cdot3^x+3=0\\\\3^{2x}-4\cdot3^x+3=0\\\\(3^x)^2-4\cdot3^x+3=0\\\\\text{Substitutie: }~\boxed{3^x=y}\\\\y^2-3y-y+3=0\\\\y(y-3)-(y-3)=0\\\\(y-3)(y-1)=0\\(y-3)=0\implies\boxed{y_1=3}\\\\(y-1)=0\implies\boxed{y_2=1}\\\\\text{Ne intoarcem la substitutie.}\\\\3^x=3\implies \boxed{x_1=1}\\\\3^x=1\implies \boxed{x_2=0}\\\\\text{Raspuns corect: }~~\boxed{\bf~e)~0~si~1}[/tex]
Răspuns:
e)0.si.1
Explicație pas cu pas:
9^x-4×3^x+3=0 avem 9^x=(3^2)^x
(3^2)^x-4×3^x+2=0
folosim formula (a^m)^n=(a^n)^m si transformăm expresia (3^2)^x=(3^x)^2
(3^x)^2-4×3^x+3=0 avem (3^x)^2-4×3^x=t^2-4t
t^2-4t+3=0
t=3
t=1
3^x=3
3^x=1
x1=0
x2=1
deci S={0,1}
varianta corecta este e)0 si 1