👤
a fost răspuns

Salut, am nevoie de ajutor la ex. 1.255C( explicatii pas cu pas, va rog)

Salut Am Nevoie De Ajutor La Ex 1255C Explicatii Pas Cu Pas Va Rog class=

Răspuns :

Răspuns:

a

Explicație pas cu pas:

[tex]\sqrt{log_a(ax) + log_x(ax)} + \sqrt{log_a(\frac{x}{a}) + log_x(\frac{a}{x})} = 2\sqrt{a}\\\textrm{Aplicam } log_k(ab) = log_k(a) + log_k(b) \textrm{ si } log_k(a/b) = log_k (a) - log_k(b)\\\sqrt{log_a(a) + log_a(x) + log_x(a) + log_x(x)} + \sqrt{log_a(x) - log_a(a) + log_x(a) - log_x(x)} = 2\sqrt{a}[/tex]

[tex]\sqrt{1 + log_a(x) + log_x(a) + 1} + \sqrt{log_a(x) + log_x(a) - 1 - 1} = 2\sqrt{a}\\\\\sqrt{log_a(x) + log_x(a) + 2} + \sqrt{log_a(x) + log_x(a) - 2} = 2\sqrt{a}\\\\\textrm{Notam b = }log_a(x) + log_x(a)\\\\\sqrt{b+2} + \sqrt{b-2} = 2\sqrt{a}\\\\\sqrt{b+2}\sqrt{b-2} = \sqrt{(b+2)(b-2)} = \sqrt{b^2 - 4}\\\\\sqrt{b+2} + \sqrt{b-2} = 2\sqrt{a}\Bigg | \hat{}\,\, 2\\\\ b \cancel{+ 2} + b \cancel{- 2} + 2\sqrt{b^2 - 4} = 4a\\\\2b+2\sqrt{b^2 - 4} = 4a\Bigg | \div 2\\\\ b + \sqrt{b^2 - 4} = 2a\\\\ log_a(x) + log_x(a) + \sqrt{(log_a(x) + log_x(a))^2 - 4} = 2a\\\\ log_a(x) + log_x(a) + \sqrt{log_a^2(x) + log_x^2(a) + 2log_x(a)\cdot log_a(x) - 4} = 2a[/tex]

[tex]\textrm{Aplicam } a\cdot log_b(c) = log_b(c^a)\textrm{ astfel:}\\\\log_a(x)\cdot log_x(a) = log_x(a^{log_a(x)})\\\\\textrm{Acum, }a^{log_a(b)} = b\\\\ \implies log_x(a^{log_a(x)}) = log_x(x) = 1 = log_a(x) \cdot log_x(a)[/tex]

[tex]log_a(x) + log_x(a) + \sqrt{log_a^2(x) + log_x^2(a) + 2\cdot 1 - 4} = 2a\\\\log_a(x) + log_x(a) + \sqrt{log_a^2(x) + log_x^2(a) - 2} = 2a\\\\log_a(x) + log_x(a) + \sqrt{log_a^2(x) + log_x^2(a) - 2\cdot log_a(x)\cdot log_x(a)} = 2a\\\\log_a(x) + log_x(a) + \sqrt{(log_a(x) - log_x(a))^2} = 2a\\\\log_a(x) + log_x(a) + | log_a(x) - log_x(a) | = 2a\\\\\textrm{Daca } log_a(x) - log_x(a) \geq 0:\\\\2log_a(x) = 2a\\\\a = log_a(x)\\\\ log_a(a^a) = log_a(x)\Rightarrow x = a^a\\\\\textrm{Daca }log_a(x) - log_x(a) < 0: \\\\ 2log_x(a) = 2a\\\\ log_x(a) = a\\\\ log_x(a) = log_x(x^a)\\\\ a = x^a\Big | \hat{}\,\,\frac{1}{a}\\\\ x = a^\frac{1}{a}\\\\\implies \boxed{x = a^{a^{\pm 1}}}[/tex]